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Abstract. In this paper we study the magnetocaloric effect in transition metals based compounds. For
this purpose, we use a microscopical model, based on the band theory of magnetism, where the magnetic
lattice is coupled with the crystalline lattice and with the external magnetic field. We apply the model to
calculate the magnetocaloric effect in the compound MnAs, which undergoes a first order magnetic phase
transition. The theoretically calculated isothermal entropy changes and the adiabatic temperature changes
upon magnetic field variation exhibit a good agreement with the available experimental data.

PACS. 75.30.Sg Magnetocaloric effect, magnetic cooling – 75.10.Lp Band and itinerant models – 75.20.En
Metals and alloys

1 Introduction

The magnetocaloric effect [1–10] is intrinsic to all mag-
netic materials and is due to the coupling between the
magnetic lattice and the external magnetic field. The
magnetocaloric effect [1–4] is measured by the isothermal
entropy change ∆S upon magnetic field variations, i.e.,
∆S(T ) = S(T, hext �= 0)−S(T, hext = 0) and by the tem-
perature change ∆Tad(T ) = T2−T1 determined under the
adiabatic condition S(T2, h

ext �= 0) = S(T1, h
ext = 0). Ex-

perimental data [1–4] show that the magnetocaloric effect
in heavy lanthanide metals, and their compounds is larger
than that observed in transition metals based compounds.
The largest values of the magnetocaloric effect in rare
earth compounds, are usually associated with large sat-
uration magnetization and small magnetic ordering tem-
perature as compared with the corresponding values of
the transition metals compounds. How to get magnetic
compounds exhibiting large values for the magnetocaloric
effect has been a long standing question for many years. In
the later nineties, Pecharsky and Gschneidner [5,6] have
discovered that the compound Gd5Si2Ge2, which has sat-
uration magnetization around 7.0 µB and undergoes a
magnetic phase transition around room temperature, ex-
hibits a giant magnetocaloric effect. For instance, around
300 K and for a magnetic field variation from 0 to 5 T
the isothermal entropy change in this compound is about
19 J/KKg. It has been pointed out that this large value of
the isothermal entropy change is due to a first order mag-
netic phase transition combined with a crystallographic
transformation. Recent experiments [11–13] reveal that at
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room temperature and for a magnetic field variation from
0 to 5 T, the isothermal entropy change in the compound
MnAs, is as large as 40 J/KKg. The large value of the
isothermal entropy change in this compound is also due to
a first order magnetic phase transition. Although the sat-
uration magnetization in the compound MnAs, typically
of the order of 3.4 µB, is smaller than that of rare earth
compounds, its isothermal entropy change is much greater
than that observed in Gd5Si2Ge2. This fact indicates that
not only the magnitude of the magnetic moment but also
the nature of the magnetic phase transition is important
to the establishment of the magnetocaloric effect.

More recently, Tegus et al. [14] have shown that the
compound MnFeP0.45As0.55 also exhibits at room temper-
ature an isothermal entropy change as large as that ob-
served in Gd5Si2Ge2. The giant isothermal entropy change
in the compound MnFeP0.45As0.55 is also due to the first
order magnetic phase transition. These experimental find-
ings put the compounds MnAs and MnFeP0.45As0.55 to-
gether with Gd5Si2Ge2 as interesting candidates with a
potential to be used as active magnetic refrigerants at
room temperature. Independently, whether or not these
compounds will prove their technological applications,
they constitute important systems to investigate the mag-
netocaloric effect associated with the first order magnetic
phase transition. Although, the existence of a giant value
of the isothermal magnetic entropy change associated with
a first order magnetic phase transition can be easily un-
derstood via the macroscopic Maxwell thermodynamic re-
lation, i.e., ∆S =

∫ hext

0 (∂M/∂T )dhext, the microscopical
physical mechanism involved in the isothermal magnetic
entropy change in this class of compounds, is not yet well
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understood. Recently, Pecharsky et al. [15] have experi-
mentally estimated that the isothermal entropy change in
Gd5Ge4 has a large contribution from the crystallographic
transformation induced in this compound by the applied
magnetic field.

The magnetocaloric effect of rare-earth compounds un-
dergoing a second order magnetic phase transition has
been explained by using a model Hamiltonian of local-
ized spins [16–18]. The magnetocaloric effect in the com-
pounds RCo2 (R= Er, Ho and Dy) which undergo a first
order magnetic phase transition, has also been explained
on the basis of the localized model including a coupling
with itinerant electrons of the Co ions [19,20]. Last year, it
has been reported [21] a phenomenological calculation of
itinerant electrons metamagnetism and its implication on
the giant magnetocaloric effect in compounds with first or-
der magnetic phase transition. In that paper, the authors
started with a phenomenological equation of state based
on the Landau theory of phase transitions and use the
Maxwell thermodynamic relation to calculate the isother-
mal magnetic entropy, for some values of the model param-
eters. Very recently, we calculate the magnetocaloric effect
in the compound Gd5(SixGe1−x)4 by using a Heisenberg-
like model including the magnetoelastic effect [22] on the
basis of the Bean and Rodbel model [23]. Using a similar
model [24], we also calculate the magnetocaloric effect in
the compound MnAs1−xSbx. However, despite the good
agreement with experimental data obtained in that pa-
per [24], the magnetocaloric effect in transition metal com-
pounds such as MnAs1−xSbx and MnFeP0.45As0.55 should
be better described by a model Hamiltonian based on the
band theory of magnetism which incorporates itinerant
electrons.

To the best of my knowledge, all theoretical works that
calculate the magnetocaloric effect, via the entropy ver-
sus temperature diagram, consider that the contribution
from a crystalline lattice to the total entropy does not de-
pend on the magnetization and on the external magnetic
field. However, in compounds exhibiting first order mag-
netic phase transition, which is usually accompanied by a
unit cell deformation, the interactions between the elec-
trons and the lattice vibrations, should be considered in
the calculations of both the magnetic and the crystalline
lattice entropies. In this paper, we report for the first time
on a microscopic model to describe the magnetocaloric ef-
fect in transition metals based compounds. In the model,
the contributions from the magnetic and the crystalline
lattices to the total entropy depend on the applied mag-
netic field. Our main results show that the magnetoelastic
effect plays an important role in the physical mechanism
of the magnetocaloric effect, in compounds with first order
phase transition, as it has already been experimentally [15]
observed in Gd5Ge4.

2 Model

In order to describe the magnetocaloric effect in transition
metal based compounds, we start with a model Hamil-
tonian including Coulomb correlated itinerant electrons

and phonons. Besides, it is considered that the magnetic
and the crystalline lattices are coupled via the electron-
phonon interactions. For the sake of simplicity, we treat
the Coulomb correlations between itinerant electrons in
the mean field approximation. We also take, for simplic-
ity, a semi-phenomenological approximation to incorpo-
rate the electron-phonon interactions, which renormalize
both the electron and the phonon energies. In fact, it is
observed that the magnetic ordering temperature of mag-
netic materials exhibiting a first order phase transition,
depends on the unit cell deformation due to the magne-
toelastic coupling [23]. Bean and Rodbel [23] assumed in
their paper, based on the model of localized magnetism,
that the Curie temperature change with the lattice defor-
mation as Tc = T0(1 − λΩ), where Ω = (V − V0)/V0 and
λ parametrizes the variation of Tc with the cell deforma-
tion. T0 and V0 would be the Curie temperature and the
volume in the absence of the crystalline lattice deforma-
tion. Following a similar procedure used in the Bean and
Rodbel’s paper [23], the effect of the unit cell deforma-
tion on the magnetic ordering temperature in the model
of itinerant electrons can be taken into account by a renor-
malization of the electron energy as ε̃kσ = εkσ(1 − γelΩ).
We also consider that the unit cell deformation renormal-
izes the phonon dispersion relation in an analogous form,
i.e., ω̃k = ωk(1 − γphΩ). So, within these considerations,
we start with the following effective model Hamiltonian
describing itinerant 3d-electrons and phonons:

H =
∑

iσ

(
ε0 + U 〈n−σ〉 − σµBhext

)
d+

iσdiσ

+
∑

ijσ

Tijσd+
iσdjσ +

∑

kσ

�ω̃a+
kσakσ. (1)

The last term in this Hamiltonian describes the phonons,
whereas the remaining terms describe a system of itin-
erant electrons, in the single band approximation. Here
Tijσ =

∑
ε̃kσeik(ri−rj) represents the electron hopping en-

ergy between two different sites, where the renormalized
energy ε̃kσ takes into account the lattice deformation. ε0 is
an atomic energy level and U is the Coulomb interaction
parameter between itinerant electrons. In the mean field
approximation, where the cell deformation Ω, associated
with the magnetoelastic coupling, can be taken propor-
tional to the total magnetization, i.e., Ω ∼ M2, the local
Green function for the 3d electrons is given by:

gel
00σ(z) =
∫

ρel
0 (ε′)dε′

z − (1 − γelM2)ε′ − ε0 − U 〈n−σ〉 + σµBhext
(2)

where z = ε + i0 and ρel
0 (ε′) is a standard paramagnetic

density of states. The spin dependent density of states
for 3d electrons, calculated by ρel

σ (ε) = − 1
π Im gel

00σ(z),
should be self consistently determined under the condition
that the total occupation number of electrons remains con-
stant. The magnetization is calculated by M = 5(〈nel

↑ 〉 −
〈nel

↓ 〉), where the factor 5 accounts for the degeneracy
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of the 3d states and the electrons occupation number per
spin direction is given by 〈nel

σ 〉 =
∫

ρel
σ (ε)f(ε)dε, f(ε) be-

ing the Fermi distribution function. The onset of the mag-
netization,essentially depends on the width of the density
of states, as is assured by the Stoner criterion. From equa-
tion (2) it can be observed that the width of the electrons
density of states changes as a function of temperature due
to the magnetoelastic coupling. If, for a large magnetoelas-
tic coupling parameter, a sudden increase of the volume of
the unit cell at the magnetic ordering temperature occurs,
when the temperature is decreased from the paramagnetic
phase, the width of the electrons density of states will be
reduced. As a result, the magnetization will be large and
the magnetic phase transition will be of first order. On the
contrary, if there is no a sudden variation of the volume
of the unit cell at the magnetic ordering temperature, the
width of the electron density of states is almost temper-
ature independent and the magnetic phase transition will
be of second order. Hence the strength of the magnetoe-
lastic coupling combined with the width of the electron
density of states, control the order of the magnetic phase
transition.

The magnetic entropy associated with the electronic
part of the Hamiltonian is given by:

Smag(T, hext) = R




∑

σ

µ∫

−∞
ln
(
1 + e−β(ε−µ)

)
ρel

σ (ε)dε

+
1

kT

∑

σ

µ∫

−∞
(ε − µ) ρel

σ (ε)f(ε)dε



 (3)

where µ is the chemical potential of the electron gas; R is
the universal gas constant and β = 1/kT , k being the
Boltzmann constant. Notice that the above expression
contains both the magnetic and the electronic entropies.
It should be stressed that in transition metals based com-
pounds, it is very difficult to separate the magnetic and
the electronic entropies, once in these compounds the mag-
netism is due to the itinerant electrons. It is also important
to mention that in the present calculations of the magne-
tocaloric effect, we consider in Smag only the contribution
from the “d” electrons. The contribution from the “s”
and “p” electrons to the magnetic entropy is neglected
because it does not affect the magnetocaloric quantities.
This is because it is supposed that the contribution from
the “s” and “p”-electrons does not depend on the external
magnetic field, once the “s” and “p” electrons densities of
states are very broad. Notice also, that the magnetic en-
tropy depends on the cell deformation through the param-
eter γel which modifies the width of the spin dependent
electrons density of states. So, in the case of first order
magnetic phase transition, where the 3d electrons density
of states is suddenly reduced at TC , there will be a jump
in the magnetic entropy.

According to statistical mechanics, the lattice entropy
related to the phonon part of the Hamiltonian is given by

Slat = R

[

−
∫

ln
(
1 − e−β�ω̃

)
ρph(ω̃)dω̃

+
1

kT

∫
�ω̃

(eβ�ω̃ − 1)
ρph(ω̃)dω̃

]

(4)

where ρph(ω̃) is a renormalized density of phonons fre-
quency. Using the Green function technique, ρph(ω̃) can
be written as ρph(ω̃) = − 1

π Im gph(z); where gph(z) is
given by:

gph(z) =
∫

ρph
0 (ω′)dω′

z − (1 − γphM2)ω′ (5)

where ρph
0 (ω′) is a standard density of phonons frequency.

Notice that the density of phonons frequency and con-
sequently the crystalline lattice entropy, depend on the
external magnetic field via the magnetization. In the par-
ticular case of the Debye approximation, where ρph

0 (ω) =(
3N/ω3

D

)
ω2, with N and ωD being respectively the num-

ber of ions and the Debye cutoff frequency, the equa-
tion (4) for the crystalline lattice entropy reduces to the
well known Debye interpolation formula:

Slat(T, hext) =




−3R ln

(

1 − exp

(

− Θ̃D

T

))

+12R

(
T

Θ̃D

)3
Θ̃D/T∫

0

x3

exp(x) − 1
dx




 . (6)

Here Θ̃D = ΘD(1 − γphM2) is the renormalized Debye
temperature, ΘD being the bare value of the Debye tem-
perature. The total entropy of the compound is the sum
of the contributions from the crystalline (Slat) and the
magnetic (Smag) lattices, i.e., S = Slat + Smag. The
isothermal entropy change upon magnetic field variation
is calculated by:

∆S(T ) = S(T, hext �= 0) − S(T, hext = 0). (7)

Notice that the previous equation for the isothermal en-
tropy change takes explicitly into account the contribu-
tion from lattice entropy. If the dependence of the lat-
tice entropy with the external magnetic field is neglected,
the change in the total entropy reduces to the calculation
of the change in the magnetic part of the entropy, as it
is usually made in the literature. The present model is
quite general and can be applied to calculate the mag-
netocaloric effect of many transition metals based com-
pounds, undergoing both first and second order magnetic
phase transitions. In our model, what determines the na-
ture of the magnetic phase transition, it is the magnitude
of the coupling between the magnetic and the crystalline
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lattices combined with the width of the 3d electrons den-
sity of states. On the one hand, for a wide electrons den-
sity of states or weak coupling between the magnetic and
crystalline lattices, the magnetization around TC changes
smoothly, and a large magnetocaloric effect is not ex-
pected to occur. On the other hand, for a narrow electrons
density of states, combined with a strong magnetoelastic
coupling, a large variation of the magnetization around TC

will be brought about and a giant magnetocaloric effect is
likely to occur, even if the magnetic phase transition is of
second order.

3 Application to MnAs

In this section, we illustrate the present model with the
calculation of the magnetocaloric effect in the compound
MnAs. It has been experimentally shown [25–30] that this
compound crystallizes in the NiAs-type structure and un-
dergoes a first order transition from ferromagnetic to para-
magnetic phase together with a crystallographic phase
transformation from the NiAs-type structure to MnP-type
structure, accompanied by a decrease of the volume of the
unit cell. The decrease of the volume of the unit cell mod-
ifies the phonons frequency and the electronic structure
of the compound, i.e., the density of phonons frequency
and the electrons density of states become narrower as
the temperature goes to zero. In our model, these effects
are taken into account by the parameters γel and γph,
which should also be evaluated by self consistent calcu-
lations. However, this kind of calculations is not in the
scope of the present paper. For the sake of simplicity and
in order to reproduce the experimental data of the mag-
netization around the magnetic ordering temperature, we
take the parameter γel, which should be less than one,
proportional to the variation of the volume of the unit cell
with temperature [25–27]. We also consider a small linear
dependence of this parameter with the external magnetic
field which is taken from the slope of the curve TC × hext

inferred from the magnetization measurements [12]. The
parameter γph was taken as one tenth of the parame-
ter γel. With this particular choice of the γel and γph pa-
rameters, it is supposed that the magnetoelastic coupling
affects more the electrons density of states rather than
the phonons frequency spectrum. We consider an initial
paramagnetic 3d electrons density of sates, whose width
is approximately 5 eV, extracted from first principles cal-
culations [31]. The Coulomb interaction parameter was
chosen to reproduce the experimental value of the satura-
tion magnetization [12]. Here we take U = 0.477 in units
of the electron bandwidth. It is very important to men-
tion that in the mean field approximation for a model of
correlated itinerant electrons, the magnetic ordering tem-
perature (TC) is overestimated. To obtain a more accu-
rate value of TC is necessary to go beyond the mean field
approximation to treat better the Coulomb correlations.
However, this kind of approach is far beyond the scope of
the present paper. So, in order to compare our theoreti-
cal calculations with the available experimental data, we
make plots using the renormalized temperature T/TC.
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Fig. 1. Temperature dependence of the magnetization for
MnAs. The solid lines correspond to our calculations whereas,
squares, circles and triangles represent experimental data [12]
for magnetic fields of 1 T, 2 T and 5 T respectively .

As far as the calculations of the crystalline lattice
entropy are concerned, we use, for the sake of simplic-
ity, a parabolic density of phonons frequency, as in the
Debye approximation, and take the Debye temperature as
ΘD = 400 K. Bearing in mind the previous discussion,
we self consistently calculate the temperature dependence
of the magnetization and the temperature dependence of
the total entropy of the compound. For the set of the
model parameters discussed previously, our calculations
show that, as we go from low temperature to high temper-
ature, the 3d electrons density of states, suddenly becomes
broader around the magnetic ordering temperature. As a
result, the magnetization goes abruptly to zero yielding
a first order magnetic phase transition. The magnetiza-
tions calculated for low values of the applied magnetic
field, depicted in Figure 1, are in good agreement with
experimental data [12]. In Figure 2, we plot the tempera-
ture dependence of the total entropy for hext = 0 T (solid
line); for hext = 1 T: (dashed line); for hext = 2 T (dot-
ted line) and for hext = 5 T (dashed dotted line). No-
tice that there is a jump in the total entropy which is
pushed to higher temperature as the magnetic field is in-
creased. It is worth mentioning that both the magnetic
and lattice entropies contribute to the jump in the total
entropy, although the main contribution to it, comes from
the magnetic part of the entropy. Our estimate is that the
contribution from the crystalline lattice to the jump in the
total entropy is less than 10%. Perchasky et al. [15] have
experimentally estimated that the contribution from the
crystallographic transformation to the isothermal entropy
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Fig. 2. Temperature dependence of the total entropy for MnAs
compound. The solid line represents the calculation in the ab-
sence of an external magnetic field, whereas the dashed, dotted
and the dashed-dotted lines represent the calculations for 1 T;
2 T and 5 T respectively.
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Fig. 3. Isothermal entropy change for MnAs. The dotted, solid
and dashed lines correspond to our calculations, whereas cir-
cles, crosses and squares represent experimental data [12] for
a magnetic field variations from 0 to 1 T; from 0 to 2 T and
from 0 to 5 T respectively.

change in Gd5Ge4 is more than one half of the total ef-
fect in magnetic field below 2 T. Further theoretical and
experimental studies are necessary to better understand
the role of the crystalline lattice in the isothermal entropy
change in compounds with first order phase transition.

In Figure 3, we show the corresponding isothermal en-
tropy changes, which have also a small contribution from
the lattice entropy. From this figure, we observe a better
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Fig. 4. Adiabatic temperature change for MnAs. The dotted,
solid and dashed lines correspond to our calculations whereas,
circles, crosses and squares represent experimental data [11] for
a magnetic field variations from 0 to 1 T; from 0 to 2 T and
from 0 to 5 T respectively.

agreement with experimental data [12] for small magnetic
field variations. However, for the magnetic field variation
from 0 to 5 T, there are some deviations between our cal-
culations and experiments. These discrepancies occur be-
cause, the effect of the magnetoelastic coupling extends to
a larger range of temperature around TC with increasing
magnetic field. In order to obtain a better description of
this effect it is necessary to take into account a more rigor-
ous treatment of the electronic structure and of the mag-
netoelastic coupling. In Figure 4 we plot our theoretical
calculations for the adiabatic temperature change (∆Tad)
in MnAs. In this figure, we observe some deviations be-
tween the calculations and experiments, although the the-
oretical curves show the good trend of the experimental
data [11]. Again, in order to obtain a better agreement be-
tween our theoretically calculated ∆Tad and experiments
it is necessary to include a more rigorous treatment of the
electronic structure and of the magnetoelastic coupling.

4 Concluding remarks

In conclusion, in this paper we have proposed a micro-
scopical model, based on the band theory of magnetism,
to calculate the magnetocaloric effect in transition metals
based compounds. The main points of the present model
are: i) the coupling between the magnetic and the crys-
talline lattices, together with a narrow 3d electrons den-
sity of states, may lead to a first order magnetic phase
transition and consequently to a giant magnetocaloric ef-
fect. ii) The inclusion of the magnetic field dependence of
the crystalline lattice entropy opens a new horizon in the
study of the magnetocaloric effect, mainly in the discus-
sion of the physical mechanism involved in the isothermal
entropy change.

Despite the approximations used in the model Hamil-
tonian, the agreement between the available experimental
data and the theoretically calculated isothermal entropy
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change and the adiabatic temperature change, suggests
that the calculations contain the correct physics involved
in the process of the magnetocaloric effect, observed in the
compound MnAs. The model is easily applied to calculate
the magnetocaloric effect in many others transition met-
als based compounds. Besides it can be straightforwardly
extended to calculate the barocaloric effect as well as the
combined effect of the external pressure and applied mag-
netic field on the cooling power of transition metals based
compounds. The results obtained in this paper indicate
that a large magnetocaloric effect can be achieved in other
metallic compounds based on Mn, by introducing intersti-
tial or substitutional disorder in such a way to reduce the
3d electrons bandwidth associated with Mn ions. This is a
suggestion for an experimental procedure to search novel
magnetic materials based on transition metals exhibiting
large magnetocaloric effect. It is also worth mentioning
here, that the present model may be improved by using
an approach beyond the mean field approximation, which
certainly will provide a better value for TC ; by incorporat-
ing a more detailed calculations of the electronic structure
and a more rigorous microscopic treatment of the electron-
phonon interaction, which may provide better values for
the γel and γph parameters. However, it is expected that
all of these improvements, which make the numerical cal-
culations much more complex, do not change the main
conclusions of this work.

This work was partially supported by PRONEX N◦ E-
26/171.168/2003 from CNPq/FAPERJ- Brazilian agencies. I
am indebted to P.J. von Ranke for enlightening discussions
related to the magnetocaloric effect over these last years.
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